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Abstract 
In this paper we describe the major elements of MIT Lincoln Laboratory’s Gaussian mixture model (GMM)-
based speaker verification system used successfully in several NIST Speaker Recognition Evaluations (SREs). 
The system is built around the likelihood ratio test for verification, using simple but effective GMMs for 
likelihood functions, a universal background 
model (UBM) for alternative speaker representation, and a form of Bayesian adaptation to derive speaker 
models from the UBM. The development and use of a handset detector and score normalization to greatly 
improve verification performance is also described and discussed. Finally, representative performance 
benchmarks and system behavior experiments on NIST SRE corpora are presented.. 
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Introduction 
Over the past several years, Gaussian mixture 
models (GMMs) have become the dominant 
approach for modeling in text-independent speaker 
recognition applications. This is evidenced by the 
numerous papers from various research sites 
published in major speech conferences such as the 
International Conference on Acoustics Speech and 
Signal Processing (ICASSP), the European 
Conference on Speech Communication and 
Technology (Eurospeech), and the International 
Conference on Spoken Language Processing 
(ICSLP), as well as articles in ESCA Transactions 
on Speech Communications and IEEE Transactions 
on Speech and Audio Processing. A GMM is used 
in speaker recognition applications as a generic 
probabilistic model for multivariate densities 
capable of representing arbitrary densities, which 
makes it well suited for unconstrained text-
independent applications. The use of GMMs for 
text-independent speaker identification was first 
described in [1–3]. An Extension of GMM-based 
systems to speaker verification was described and 
evaluated on several publicly available speech 
corpora in [4, 5]. In more recent years, GMM-
based systems have been applied to the annual 
NIST Speaker Recognition Evaluations (SRE). 
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These systems, fielded by different sites, have 
consistently produced state-of-the-art performance 
[6, 7]. In particular, a GMM-based system 
developed by MIT Lincoln Laboratory [8], 
employing Bayesian adaptation of speaker models 
from a universal background model and handset-
based score normalization, has been the basis of the 
top performing systems in the NIST SREs since 
1996. The system is referred to as the Gaussian 
Mixture Model-Universal Background Model 
(GMM-UBM) speaker verification/detection 2 
system. In this paper we describe the development 
and evaluation of the GMM-UBM system as 
applied to the NIST SRE corpora for single-speaker 
detection. The remainder of this paper is organized 
as follows. Section 2 describes the basic speaker 
verification/detection task and the likelihood ratio 
detector approach used to address it. In Section 3 
the main components of the GMMUBM system are 
described. This section also presents the use of a 
handset detector and score normalization technique 
known as HNORM which greatly improves 
performance when training and testing with 
different microphones. Section 4 presents 
experiments and results of the GMM-UBM system 
using the NIST SRE corpora. Finally, conclusions 
and future directions are given in Section 5. 
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The speech signal conveys several levels of  
information. Primarily the speech signal conveys  
the words or message being spoken but on a 
secondary level, the signal also coveys information 
about the identity of the talker. While the area of 
speech recognition is concerned with extracting 
underlying linguistic message in an utterance, the 
area of speech recognition is concerned with 
extracting the identity of the person speaking the 
utterance. As speech interaction with computer 
become more pervasive in activities such as 
telephone financial transactions and information 
retrieval from speech databases, the utility of 
automatically recognizing a speaker based solely 
on vocal characteristics increases. 
Depending upon the application, the general area of 
speaker recognition is divided into two specific 
tasks: verification and identification. In 
verification, the goal is to determine from a voice 
sample if a person is whom he or she claims. In 
speaker identification, the goal is to determine 
which one of a group of known-voices best 
matches the input voice sample. 
Furthermore, in either task the speech can be 
constrained to be a known phrase (text-dependent) 
or totally unconstrained (text-independent). 
Success in both tasks depends on extracting and 
modeling the speaker-dependent characteristics of 
speech signal which can effectively distinguish one 
talker from another. 
In this paper a new speaker model based on 
Gaussian mixture models (GMM) is introduced and 
evaluated for text independent speaker recognition. 
The use of Gaussian mixture models for modeling 
speaker identity is motivated by the interpretation 
the Gaussian components represent some general 
speaker-dependent spectral shapes and the 
capability the Gaussian mixtures to model arbitrary 
densities. The Gaussian mixture speaker model is 
experimentally evaluated on 49 speaker 
conversational speech database containing both 
clean and telephone speech. The experiments 
examine algorithmic issues such as model 
initialization, variance limiting and model order 
selection. To compensate for spectral variability 
introduced by the telephone channel and handsets, 
robustness techniques such as long-term mean 
removal, difference coefficients, in frequency 
warping are applied and compared. The 
experiments also examine the GMM speaker 

recognition performance with respect to an 
increasing speaker population. The techniques for 
speaker recognition can be categorized into three 
major approaches. The first and earliest approach is 
to use long-term averages of acoustic features, such 
as spectrum representations or pitch. The idea is to 
average out the other factors influencing the 
acoustic features, such as phonetic variations, 
leaving only the speaker dependent component. For 
spectral features, the long-term average represents a 
speaker’s average vocal tract shape. 
This approach is equivalent to Gaussian classifier 
and has been used successfully for several difficult, 
text-independent speaker recognition tasks. 
The second approach is to model the speaker- 
dependent acoustic features within the individual 
phonetic sounds that comprise the utterance. By 
comparing acoustic features from phonetic sounds 
in a test utterance with speaker dependent acoustic 
features from similar phonetic sounds, the 
comparison measures speaker differences rather 
than textual differences. This approach can be 
accomplished using explicit or implicit 
segmentation of the speech into phonetic sound 
classes prior to speaker model recognition. 
The third and most recent approach to speaker 
recognition is the use of discriminative neural 
networks (NN). Rather than train individual models 
to represent particular speakers, discriminative 
NN’s are trained to model the decision function 
which best discriminate speakers within a known 
set. Several different networks such as multilayer 
perceptrons, time-delay NN’s, and radial basis 
functions, have recently been applied to various 
speaker recognition tasks. Generally NN’s require a 
small number of parameters than independent 
speaker models and have produced good speaker 
recognition performance, comparable to that of VQ 
systems. The major drawback of the many NN 
techniques is that the complete network must be 
retrained when a new speaker is added to the 
system. 
 

Likelihood Ratio Detector 
Given a segment of speech, Y, and a hypothesized 
speaker, S, the task of speaker detection, also 
referred to as verification, is to determine if Y was 
spoken by S. An implicit assumption often used is 
that Y contains speech from only one speaker. 
Thus, the task is better termed single-speaker 
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detection. If there is no prior information that Y 
contains speech from a single speaker, the task 
becomes multi-speaker detection. In this paper we 
will focus on the core single-speaker detection task. 
Discussion of systems that handle the multi-speaker 
detection task can be found in [9]. 
             

 
         Fig1- Likelihood Ratio Detector 

 
 
The single-speaker detection task can be restated as 
a basic hypothesis test between  
H0  :Y  is from the hypothesized speaker S 
and 
H1: Y is not from the hypothesized speaker S. 
 
The optimum test 3 to decide between these two 
hypotheses is a likelihood ratio test given by 

 
  

Where   p(Y│Hi ),i=0,1 is the probability density 
function for the hypothesis Hi evaluated for the 
observed speech segment Y, also referred to as the 
likelihood of the hypothesis Hi.  The decision 
threshold for accepting or rejecting H0 is θ . The 
basic goal of a speaker detection system is to 
determine techniques to compute values for the two 
likelihoods, 
Figure 1 shows the basic components found in 
speaker detection systems p(Y│H0 ) and  p(Y│H1 ) 
based on likelihood ratios. The role of the front-end 
processing is to extract from the speech signal 
features that convey speaker-dependent 
information. In addition, techniques to minimize 
confounding effects from these features, such as 
linear filtering or noise, may be employed in the 
front-end processing. The output of this stage is 
typically a sequence of feature vectors representing 
the test segment, 
X={x 1..,..xT}, where xt is a feature vector indexed 
at discrete time t ϵ[1,2,…..T]. There is no inherent 
constraint that features extracted at synchronous 
time instants be used; as an example, the overall 
speaking rate of an utterance could be invoked as a 

feature. These feature vectors are then used to 
compute the likelihoods of H0 and 
H1.Mathematically, H0 is represented by a model 
denoted λhyp that characterizes the hypothesized 
speaker S in the feature space of x. 
 For example, one could assume that a Gaussian 
distribution 
best represents the distribution of feature vectors 
for H0 so that λhyp would be denoting the mean 
vector and covariance matrix parameters of the 
Gaussian distribution. The alternative hypothesis, 

H, is represented by the model  λ hyp . The the 

logarithm of this statistic is used giving the log-
likelihood ratio 

         
While the model for H0 is well defined and can be 
estimated using training speech from S, the model 
for λhyp is less well defined since it potentially must 
represent the entire space of possible alternatives to 
the hypothesized speaker. Two main approaches 
have been taken for this alternative hypothesis 
modeling. The first approach is to use a set of other 
speaker models to cover the space of the alternative 
hypothesis. In various contexts, this set of other 
speakers has been called likelihood ratio sets, 
cohorts, and background speakers . Given a set of 
N background speaker models{λ1.,…λN}, the  
alternative hypothesis model is represented by 
       

 
 
where F() is some function, such as average or 
maximum, of the likelihood values from the 
background speaker set. The selection, size, and 
combination of the background speakers has been 
the subject of much research . In general, it has 
been found that to obtain the best performance with 
this approach requires the use of speaker-specific 
background speaker sets. 
This can be a drawback in applications using a 
large number of hypothesized speakers, each 
requiring their own background speaker set. The 
second major approach to alternative hypothesis 
modeling is to pool speech from several speakers 
and train a single model. Various terms for this 
single model are a general model , a world model, 
and a universal background model. Given a 
collection of speech samples from a large number 
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of speakers representative of the population of 
speakers expected during recognition, a single 
model, λbkg, is trained to represent the alternative 
hypothesis. Research on this approach has focused 
on selection and composition of the speakers and 
speech used to train the single model . The main 
advantage of this approach is that a single speaker-
independent model can be trained once for a 
particular task and then used for all hypothesized 
speakers 
in that task. It is also possible to use multiple 
background models tailored to specific sets of 
speakers. In this paper we will use a single 
background model for all hypothesized speakers 
and we refer to this as the universal background 
model (UBM). 
 

GMM-UBM Verification System  
Given the canonical framework for the likelihood 
ratio speaker detection system, we next describe the 
specific components of the GMM-UBM system. 
Gaussian Mixture Models 
An important step in the implementation of the 
above likelihood ratio detector is selection of the 
actual likelihood function, p(X│λ) .  The choice of 
this function is largely dependent on the features 
being used as well as specifics of the application. 
For text-independent speaker recognition, where 
there is no prior knowledge of what the speaker 
will say, the most successful likelihood function 
has been Gaussian mixture models. In text-
dependent applications, where there is strong prior 
knowledge of the spoken text, additional temporal 
knowledge can be incorporated by using hidden 
Markov models (HMMs) as the basis for the 
likelihood function. To date, however, use of more 
complicated likelihood functions, such as those 
based on HMMs, has shown no advantage over 
GMMs for text-independent speaker detection tasks 
as in the NIST SREs For a D-dimensional feature 
vector, x, the mixture density used for the 
likelihood function is defined as 

 
 
The density is a weighted linear combination of M 
unimodal Gaussian densities, pi(x) each 
parameterized by a mean D×1 vector, µi , and a 
D×D covariance matrix, Σi ; 

 

 
 
The mixture weights, ωi , furthermore satisfy the 
constraint 

                                
Collectively, the parameters of the density model 
are denoted as  λ={ωi, µi, Σi}, where i= 1…..,…M. 
While the general model form supports full 
covariance matrices, i.e., a covariance matrix with 
all its elements, we use only diagonal covariance 
matrices in this paper. This is done for three 
reasons. First, the density modeling of an Mth order 
full covariance GMM can equally well be achieved 
using a 
larger order diagonal covariance GMM. Second, 
diagonal-matrix GMMs are more computationally 
efficient than full covariance GMMs for training 
since repeated inversions of a D×D matrix are not 
required. Third, empirically we have observed that 
diagonal matrix GMMs outperform full matrix 
GMMs. 
Given a collection of training vectors, maximum 
likelihood model parameters are estimated using 
the iterative expectation–maximization (EM) 
algorithm. The EM algorithm iteratively refines the 
GMM parameters to monotonically increase the 
likelihood of the estimated model for the observed 
feature vectors, i.e., for iterations k and k+ 1,  

                      
Generally, five iterations are sufficient for 
parameter convergence. The EM equations for 
training a GMM can be found in [3, 18]. As 
discussed later, parameters for the UBM are trained 
using the EM algorithm, but a form of Bayesian 
adaptation 
is used for training speaker models. 

Usually, the feature vectors of X are 
assumed independent, so the log-likelihood of a 
model λ for a sequence of feature vectors, X = 
{x 1……….xT}, is computed as 

  
This is done to normalize out duration effects from 
the log-likelihood value. Since the incorrect 
assumption of independence is underestimating the 
actual likelihood value with dependencies, this 
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scaling factor can also be considered a rough 
compensation factor to the likelihood value in 
above equation. 
The GMM can be viewed as a hybrid between a 
parametric and nonparametric density model. Like 
a parametric model it has structure and parameters 
that control the behavior of the density in known 
ways, but without constraints that the data must be 
of a specific distribution type, such as Gaussian or 
Laplacian. Like a nonparametric model, the GMM 
has many degrees of freedom to allow arbitrary 
density modeling, without undue computation and 
storage demands. It can also be thought of as a 
single-state HMM with a Gaussian mixture 
observation density, or an ergodic Gaussian 
observation HMM with fixed, equal transition 
probabilities. Here, the Gaussian components can 
be considered to be modeling the underlying broad 
phonetic sounds that characterize a person’s 
voice. A more detailed discussion of how GMMs 
apply to speaker modeling can be found in [2,3]. 
The advantages of using a GMM as the likelihood 
function are that it is computationally inexpensive, 
is based on a well-understood statistical model and, 
for text-independent tasks, is insensitive to the 
temporal aspects of the speech, modeling only the 
underlying distribution of acoustic observations 
from a speaker. The latter is also a disadvantage in 
that higher levels of information about the speaker 
conveyed in the temporal speech signal are not 
used. The modeling and exploitation of these 
higher-levels of information may be where 
approaches based on speech recognition produce 
benefits in the future. To date, however, these 
approaches (e.g., large vocabulary or phoneme 
recognizers) have basically been used only as 
means to compute likelihood values, without 
explicit use of any higher-level information such as 
speaker-dependent word usage or speaking style. 
Front-End Processing 
Several processing steps occur in the front-end 
analysis. First, the speech is segmented into frames 
by a 20-ms window progressing at a 10-ms frame 
rate. A speech activity detector is then used to 
discard silence–noise frames. The speech activity 
detector is a self-normalizing, energy based 
detector that tracks the noise floor of the signal and 
can adapt to changing noise conditions. The speech 
detector discards 20–25% of the signal from 
conversational telephone recordings such as that in 

the Switchboard databases from which the NIST 
SRE corpora are derived. 
 
Next, mel-scale cepstral feature vectors are 
extracted from the speech frames. The mel-scale 
cepstrum is the discrete cosine transform of the 
logspectral energies of the speech segment Y. The 
spectral energies are calculated over 
logarithmically spaced filters with increasing 
bandwidths (mel-filters). A detailed description of 
the feature extraction steps can be found in [2, 3]. 
For bandlimited telephone speech, cepstral analysis 
is performed only over the melfilters in the 
telephone passband (300–3400 Hz). All cepstral 
coefficients except its zeroth value (the DC level of 
the log-spectral energies) are retained in the 
processing. Finally, delta cepstra are computed 
using a first order orthogonal polynomial temporal 
fit over ±2 feature vectors (two to the left and two 
to the right over time) from the current vector. The 
choice of features is based on previous good 
performance and results in. comparing several 
standard speech features for speaker identification. 
Finally, the feature vectors are channel normalized 
to remove linear channel convolutional effects. 
Since we are using cepstral features, linear 
convolutional effects appear as additive biases. 
Both cepstral mean subtraction (CMS) and RASTA 
filtering have been used successfully and, in 
general, both methods have comparable 
performance for single speaker detection tasks. 
When training and recognition speech are collected 
from different microphones or channels (e.g., 
different telephone handsets and/or lines), this is a 
crucial step for achieving good recognition 
accuracy. However, as seen in several NIST SRE 
results and reported in this linear compensation 
does not completely eliminate the performance loss 
under mismatched microphone conditions. In this 
paper, we describe one approach to address this 
remaining mismatch using a normalization of log-
likelihood ratio scores. An alternative approach to 
account specifically for differences in microphone 
nonlinearities across train and test data is to operate 
on the waveform with nonlinear transformations, 
rather than adjusting the log-likelihood ratio scores. 
Universal Background Model 
In the GMM-UBM system we use a single, 
speaker-independent background model to 
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represent p(X│λ hyp ) The UBM is a large GMM 

trained to represent the speaker-independent 
distribution of features. Specifically, we want to 
select speech that is reflective of the expected 
alternative speech to be encountered during 
recognition. This applies to both the type and the 
quality of speech, as well as the composition of 
speakers. For example, in the NIST SRE single 
speaker detection tests, it is known a priori that the 
speech comes from local and long-distance 
telephone calls and that male hypothesized 
speakers will only be tested against male speech. In 
this case, we would train the UBM used for male 
tests using only male telephone speech. In the case 
where there is no prior knowledge of the gender 
composition of the alternative speakers, we would 
train using gender-independent speech. Other than 
these general guidelines and experimentation, there 
is no objective measure to determine the right 
number of speakers or amount of  speech to use in 
training a UBM. Empirically, from the NIST SRE 
we have observed no performance loss using a 
UBM trained with one hour of speech compared to 
one trained using six hours of speech. In both 
cases, the training speech was extracted from the 
same speaker population. Careful experiments 
controlling the number of speakers present in the 
UBM training data have not been conducted. 
Given the data to train a UBM, there are many 
approaches that can be used to obtain the final 
model. The simplest is to merely pool all the data 
to train the UBM via the EM algorithm (Fig. 2a). 
One should be careful that the pooled data 
are balanced over the subpopulations within the 
data. For example, in using gender-independent 
data, one should be sure there is a balance of male 
and female speech. Otherwise, the final model will 
be biased toward the dominant sub- population. 
The same argument can be made for other 
subpopulations such as speech from different 
microphones. Another approach is to train 
individual UBMs over the subpopulations in the 
data, such as one for male and one for female 
speech, and then pool the subpopulation models 
together (Fig. 2b). This approach has the 
advantages that one can effectively use unbalanced 
data and can carefully control the composition of 
the final UBM. Over the past several SREs, our 
approach has been to train UBMs over 

subpopulations in the data and then pool the models 
to create the final UBM (Fig. 2b). For the 1999 
NIST SRE we created a gender-independent UBM 
by training two 1024 mixture GMMs, one for male 
speech and one for female speech, and then pooling 
the two models to create our 2048 mixture UBM. 
We trained these using one hour of speech per 
gender which was extracted from the 1997 SRE 30-
s test files. The speech was equally distributed over 
carbon-button and electret handset types (using 
handset labels provided by NIST). The models 
were pooled simply by agglomerating the 
Gaussians and renormalizing the mixture weights. 
 

  
         Fig (a) 

 
 

         Fig (b) 
 
Adaptation of Speaker Model 
In the GMM-UBM system, we derive the 
hypothesized speaker model by adapting the 
parameters of the UBM using the speaker’s training 
speech and a form of Bayesian adaptation. Unlike 
the standard approach of maximum likelihood 
training of a model for the speaker independently 
of the UBM, the basic idea in the adaptation 
approach is to derive the speaker’s model by 
updating the well-trained parameters in the UBM 
via adaptation. This provides a tighter coupling 
between the speaker’s model and UBM which not 
only produces better performance than decoupled 
models, but, as discussed later in this section, also 
allows for a fast-scoring technique. Like the EM 
algorithm, the adaption is a two step estimation 
process. The first step is identical to the expectation 
step of the EM algorithm, where estimates of the 
sufficient statistics of the speaker’s training data 
are computed for each mixture in the UBM. Unlike 
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the second step of the EM algorithm, for adaptation 
these new sufficient statistic estimates are then 
combined with the old sufficient statistics from the 
UBM mixture parameters using a data-dependent 
mixing coefficient The data-dependent mixing 
coefficient is designed so that mixtures with high 
counts of data from the speaker rely more on the 
new sufficient statistics for final parameter 
estimation and mixtures with low counts of data 
from the speaker rely more on the old sufficient 
statistics for final parameter estimation. 
The specifics of the adaptation are as follows. 
Given a UBM and training vectors from the 
hypothesized speaker,  
X={x 1…….xT} we first determine the probabilistic 
alignment of the training vectors into the UBM 
mixture components (Fig. 3a). That is, for mixture i 
in the UBM, we compute     

            
We then use Pr(i│xt) and xt to compute the 
sufficient statistics for the weight, mean, and 
variance parameters 

                 
 

                 

 
                     Fig(b) 
FIG. 3. Pictorial example of two steps in adapting 
a hypothesized speaker model. (a) The training 
vectors (x’s) are probabilistically mapped into the 
UBM mixtures. (b) The adapted mixture 
parameters are derived using the statistics of the 
new data and the UBM mixture parameters. The 
adaptation is data dependent, so UBM mixture 
parameters are adapted by different amounts. 
 

 
This is the same as the expectation step in the EM 
algorithm. 
Finally, these new sufficient statistics from the 
training data are used to update the old UBM 
sufficient statistics for mixture i to create the 
adapted parameters for mixture i (Fig. 3b) with the 
equations: 
 

 
  
The adaptation coefficients controlling the balance 
between old and new estimates are {αi

w, αi
m, αi

v } 
weights, means and variances, respectively. The 
scale factor γ is computed over all adapted mixture 
weights to ensure they sum to unity. Note that the 
sufficient statistics, not the derived parameters, 
such as the variance, are being adapted.  
For each mixture and each parameter, a data-
dependent adaptation coefficient αi

ρ , ρ ϵ {w, m, v}, 
is used in the above equations. This is defined as 
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where rρ  is a fixed relevance factor for parameter ρ. 
 
3.5. Log-Likelihood Ratio Computation 
The log-likelihood ratio for a test sequence of 
feature vectors X is computed as 
 

 
The fact that the hypothesized speaker model was 
adapted from the UBM, however, allows a faster 
scoring method than merely evaluating the two 
GMMs as in Eq. (6). This fast scoring approach is 
based on two observed effects. The first is that 
when a large GMM is evaluated for a feature 
vector, only a few of the mixtures contribute 
significantly to the likelihood value. This is 
because the GMM represents a distribution over a 
large space but a single vector will be near only a 
few components of the GMM. Thus, likelihood 
values can be approximated very well using only 
the top C best scoring mixture components.  
The second observed effect is that the components 
of the adapted GMM retain a correspondence with 
the mixtures of the UBM, so that vectors close to a 
particular mixture in the UBM will also be close to 
the corresponding mixture in the speaker model. 
Using these two effects, a fast scoring procedure 
operates as follows: For each feature vector, 
determine the top C scoring mixtures in the UBM 
and compute UBM likelihood using only these top 
C mixtures. Next, score the vector against only the 
corresponding C components in the adapted 
speaker model to evaluate the speaker’s likelihood. 
For a UBM with M mixtures, this requires only M 
+ C Gaussian computations per feature vector 
compared to 2M Gaussian computations for normal 
likelihood ratio evaluation. When there are multiple 
hypothesized speaker models for each test segment, 
the savings become even greater. In the GMM-
UBM system, we use a value of    C = 5. 
Handset Score Normalization 
It has been widely observed in the literature that 
handset 10 variability causes significant 
performance degradation in speaker recognition 
systems. Channel compensation in the front-end 
processing addresses linear channel effects, but 
there is evidence that handset transducer effects are 
nonlinear in nature and are thus difficult to remove 
from the features prior to training and recognition. 
Because the handset effects remain in the features, 
the speaker’s model will represent the speaker’s 

acoustic characteristics coupled with the distortions 
caused by the handset from which the training 
speech was collected. Speaker same likelihood the 
same speaker. The effect is that log-likelihood ratio 
scores produced from different speaker models can 
have handset-dependent biases and scales. This is 
especially problematic when trying to use speaker-
independent thresholds in a system, as is the case 
for the NIST SREs. To develop and apply a 
handset-dependent score normalization, we first 
created a handset detector to label a speech 
segment as being either from a carbon-button 
microphone handset (CARB) or an electret 
microphone handset (ELEC). The handset detector 
is a simple maximum likelihood classifier in which 
handset dependent GMMs were trained using the 
Lincoln Laboratory Handset Database (LLHDB). A 
1024 mixture GMM was trained using speech from 
40 speakers spoken over two carbon-button 
microphone handsets and another 1024 mixture 
GMM was trained using speech from the same 40 
speakers spoken over two electret microphone 
handsets.  
Standard linear filtering compensation (cepstral 
mean subtraction and RASTA filtering) was 
applied to the features prior to model training. 
Since the models were trained with speech from the 
same speakers and had linear filtering effects 
removed, differences between the models should 
mainly be attributable to uncompensated transducer 
effects. A speech segment is then labeled by 
selecting the most likely model (CARB or ELEC) 
based on the models’ likelihood values. This 
handset detector has been used by NIST to supply 
handset information to SRE participants as well as 
for analysis of results. Using the handset labels, we 
then developed the handset score normalization 
known as HNORM. Since it is often problematic to 
obtain adequate speaker data for both training and 
development testing, an approach was sought to use 
only non-speaker (or imposter) data to estimate 
normalization parameters. The basic approach is to 
estimate from development data handset-dependent 
biases and scales in the log-likelihood ratio scores 
and then removes these from scores during 
operation. First, we compute the log-likelihood 
ratio scores for a hypothesized speaker–UBM 
model pair from a set of imposter test segments 
coming from both CARB and ELEC handsets. We 
assume these scores have a Gaussian distribution 
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and we estimate the handset-dependent means and 
standard deviations for these scores. To avoid 
bimodal distributions, the non-speaker data should 
be of the same gender as the hypothesized speaker. 
The hypothesized speaker now has two sets of 
parameters describing his or her model’s response 
to CARB and ELEC type speech:  
 

{µ (CARB),  σ (CARB),  µ(ELEC),  σ (ELEC)} 
 

For the 1999 NIST SRE we used 200 30-s speech 
segments per handset type, per gender derived from 
the 1998 SRE test corpus. In general, the duration 
of the speech segments used to estimate HNORM 
parameters should match the expected duration of 
the test speech segments. During recognition, the 
handset detector supplies the handset type of the 
test segment, X, and HNORM is applied to the log-
likelihood ratio score as 

 

 
 
Where H S (X) is the handset label for X.  
The desired effect of HNORM is illustrated in Fig. 
4. This figure shows log-likelihood ratio score 
distributions for two speakers before (left column) 
and after (right column) HNORM has been applied. 
The effect of removing the handset-dependent 
biases and scales is to normalize the non-speaker 
score distributions such that they have zero mean 
and unit standard deviation for speech from both 
handset types. This results in better performance 
when using a single threshold for detection. In 
addition to removing handset bias and scales, 
HNORM also helps normalize log-likelihood 
scores across different speaker models, again 
resulting in better performance when using 
speaker-independent thresholds as in the NIST 
SREs. HNORM is in effect estimating speaker and 
handset specific thresholds and mapping them into 
the log-likelihood score domain rather than using 
them directly. HNORM is a handset compensation 
technique that operates in the score domain. Other 
approaches to handset compensation operate in the 
signal domain or in the model domain. Since these 
techniques operate in different domains it is 
possible to combine them to potentially achieve 
even better compensation. 

 

 
 
FIG. 4. Pictorial example of HNORM 
compensation. This picture shows log-
likelihood ratio score distributions for 
two speakers before (left column) and 
after (right column) HNORM has been 
applied. After HNORM, the non-speaker 
score distribution for each handset type 
has been normalized to zero mean and 
unit standard deviation.  
 
 
 

 
 

FIG. 5. DET curves for three UBM 
compositions: Pooled male and female 
data, separate male and female models, 
and pooled male and female models. 
Results are on the NIST 1998 summer 
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development single-speaker data using 
all scores. 

 
 
   

 
 
FIG. 6. DET curves for systems using UBMs with 
16–2048 mixtures. Results are on the NIST 1998 
summer-development single-speaker data using 
all scores. 
   

    
 
FIG. 7. DET curves for adaptation of different 
combinations of parameters.  W = weights, M= 
means, V = variances. Results are on the NIST 
1998 summer-development single-speaker data 
using all scores. 
 
 

 

    
 
FIG. 8. Comparison of GMM-UBM system with 
and without HNORM. Results are on the NIST 
1999 SRE single-speaker data using all scores. 
 

Conclusion And Future Directions 
In this paper we have described the major elements 
of the GMM-UBM system used for high-accuracy 
speaker recognition. The GMM-UBM system is 
built around the optimal likelihood ratio test for 
detection, using simple but effective Gaussian 
mixture models for likelihood functions, a 
universal background model for representing the 
competing alternative speakers, and a form of 
Bayesian adaptation to derive hypothesized speaker 
models. The use of a handset detector and score 
normalization to greatly improve detection 
performance, independent of the actual detection 
system, was also described and discussed. Finally, 
representative performance benchmarks and system 
behavior experiments on the 1998 summer-
development and 1999 NIST SRE corpora were 
presented. While the GMM-UBM system has 
proven to be very effective for speaker recognition 
tasks, there are several open areas where future 
research can improve or build on from the current 
approach. The first area is dealing better with 
mismatched conditions. The GMM-UBM system, 
and all current speaker stateof- the-art recognition 
systems, rely on low-level acoustic information. 
Unfortunately, speaker and channel information are 
bound together in an unknown way in the current 
spectral-based features and the performance of 
these systems degrades when the microphone or 
acoustic environment changes between training 
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data and recognition data. Progress has been made 
in minimizing this frailty both in addressing linear 
channel distortion with cepstral mean subtraction 
and RASTA filtering and in addressing nonlinear 
effects by normalizing log-likelihood scores 
(HNORM) and by waveform compensation, but 
there still remains a tremendous performance gap 
to be bridged between matched and mismatched 
conditions. 
The second area is incorporating higher levels of 
information, such as speaking style supra-
segmental features, or word usage, into the decision 
making process. 
    

 
 
FIG. 9. Comparison of GMM-UBM system with 
and without HNORM, using different poolings of 
files in the 1999 NIST SRE single-speaker data 
set.  SNST = Same-Number, Same-Type, DNST = 
Different-Number, Same-Type, DNDT = 
Different-Number, Different-Type. 
 
Humans use several levels of information to 
recognize speakers from speech alone, but 
automatic systems are still dependent on the low-
level acoustic information. The challenges in this 
area are to find, reliably extract , and effectively 
use these higher levels of information from the 
speech signal. It is likely that these higher levels of 
information will not provide good performance on 
their own and may need to be fused with more 
traditional acoustic-based 
systems. Techniques to fuse and apply high-level 
asynchronous, or event-based, information with 

low-level synchronous acoustic features need to be 
developed in a way that makes the two feature 
classes work synergistically. 
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